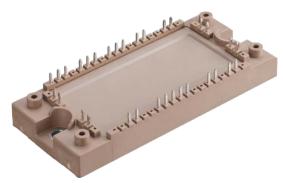
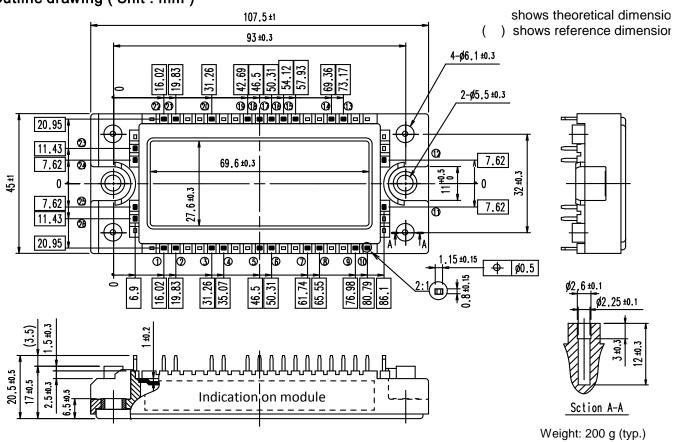
IGBT Modules

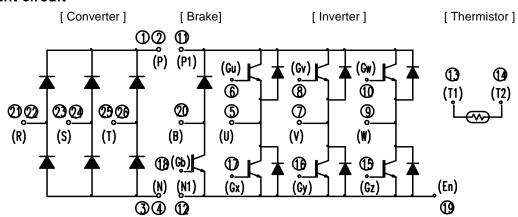
Power Module(X series) 1200V / 25A / PIM


□ Feactures

Low $V_{\text{CE(sat)}}$ Compact Package P.C.Board Mount Module Converter Diode Bridge Dynamic Brake Circuit RoHS compliant Product


□Applications

Inverter for Motor Drive AC and DC Servo Drive Amplifier Uniterruptible Power Supply


□ Typical appearance

□ Outline drawing (Unit : mm)

□ Equivalent circuit

IGBT Modules

\square Maximum ratings (at $T_c = 25^{\circ}$ C unless otherwise specified)

		Items	Symbols	Condi	tions	Maximum ratings	Units
	Collector-Emit	tter voltage	V _{CES}			1200	V
	Gate-Emitter	voltage	$V_{\sf GES}$			±20	V
ā	Collector current		I _C	Continuous	T _c =100°C	25	
nverte			I _C pulse	1ms		50	Α
ź	Forward curre	nt	I _F	Continuous		25	A
	Forward curre	TIC	I _F pulse	1ms		50	
	Collector pow	er dissipation	P _C	1 device		170	W
L	Collector-Emit	tter voltage	V _{CES}			1200	V
GB.	Gate-Emitter	voltage	V_{GES}			±20	V
		ant	I _C	Continuous	T _c =100°C	25	Α
Brake	Collector curre	51 IL	I _C pulse	1ms		50	^
	Collector pow	er dissipation	Pc	1 device		170	W
FWD	Forward curre	nt	I _F	Continuous		10	Α
Ą	orward curre	110	/ _{FRM}	1ms		20	^
Brake	Repetitive pea	ak reverse voltage	V_{RRM}			1200	V
	Repetitive pea	k reverse voltage	V_{RRM}			1600	V
rter	Average output current		10	Three- phase full wave rectified	T _c =80°C	25	А
Converter	Surge current	(Non-Repetitive) (*1)	I _{FSM}	t=10ms, -Half sine	$T_{\rm j}$ =25°C $T_{\rm j}$ =150°C	470 385	А
	I ² t (Non-Repe	etitive) (*1)	I^2t	wave form	$T_{\rm j}$ =25°C $T_{\rm i}$ =150°C	1105 750	A ² s
-			<u> </u>	Inverter, Brake		175	
J	unction temper	ature	T_{j}	Converter		150	
C	perating junction	on temperature	_	Inverter, Brake		175	
	(under switching conditions)		T_{jop}	Converter		150	°C
C	Case temperature		Tc			125	
S	Storage tempera	ature	$T_{\rm stg}$			-40 ~ 125	
	Isolation voltage	between terminals and copper base (*2) between thermistor and others (*3)	- V _{iso}	A.C. : 1min.		2500	Vrms
	Screw torque *4)	Mounting	-	M5		6.0	N∙m

^(*1) T_i : Temperature at test start.

^(*2) All terminals should be connected together during the test.

^(*3) Two thermistor terminals should be connected together, other terminals should be connected together and shorted to base plate during the test.

^(*4) Recommendable value : Mounting $2.5 \sim 6.0 \text{ N} \cdot \text{m}$ (M5)

IGBT Modules

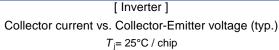
\square Electrical characteristics (at $T_j = 25^{\circ}$ C unless otherwise specified)

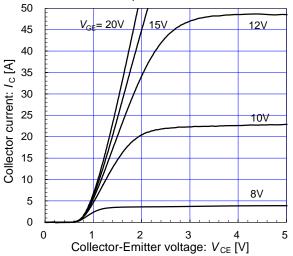
Zero Gate voltage collector current I_{CES} $V_{CE} = 10V$ $V_{CE} = 120V$	ltomo	Symbols	Conditions		Characteristics			Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	items	Syllibols	Conditions		min.	typ.	max.	Units
		I _{CES}	-		-	-	50	μA
threshold voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Emitter leakage current	I _{GES}	$V_{CE} = 0V$ $V_{GE} = +20/-20V$		-	-	100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _{GE(th)}			6.0	6.5	7.0	V
$ \begin{array}{c} \text{Saturation voltage} \\ & V_{\text{CE}(\text{said})} \\ & (\text{chip}) \\ & & \hline{T_{ =}125^{\circ}\text{C}} \\ & . \\ \hline{T_{ =}150^{\circ}\text{C}} \\ & . \\ \hline{T_{ =}150^{\circ}\text{C}} \\ & . \\ \hline{C_{ =}100^{\circ}} \\ C_{$, ,	V _{GE} = 15V	<i>T</i> _j =25°C	-	1.65	2.10	
$ \begin{array}{c} \text{Saturation voltage} \\ & \begin{array}{c} V_{\text{CE(sat)}} \\ \text{(chip)} \\ \end{array} \end{array} \begin{array}{c} I_{\Gamma} = 125^{\circ}\text{C} \\ \hline I_{\Gamma} = 105^{\circ}\text{C} \\ \hline I_{\Gamma} = 105^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 175^{\circ}\text{C} \\ \end{array} \begin{array}{c} -1.95 \\ \hline I_{\Gamma} = 17$	Collector-Emitter			T _j =25°C	-	1.50	1.95	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	saturation voltage	V _{CE(sat)}		T _j =125°C	-	1.85	-	V
$ \begin{array}{ c c c c }\hline \text{Internal Gate resistance} & r_g & - & & - & 0 & - & \Omega \\ \hline C_{\text{capacitance}} & C_{\text{cas}} & V_{\text{CE}} = 10V, V_{\text{GE}} = 0V, f = 1\text{MHz} & - & 2.7 & - & \text{nF} \\ \hline C_{\text{cos}} & V_{\text{CC}} = 600V & V_{\text{GE}} = 15 \rightarrow +15V & - & 0.02 & - & \\ \hline C_{\text{res}} & V_{\text{CC}} = 600V & V_{\text{GE}} = 15 \rightarrow +15V & - & 170 & - & \text{nC} \\ \hline \\ \hline Gate charge & Q_G & V_{\text{CE}} = 15V & T_{\text{P}} = 25^{\circ}C & - & 1.95 & 2.40 \\ \hline V_F & T_{\text{P}} = 25A & T_{\text{P}} = 25^{\circ}C & - & 1.80 & 2.25 \\ \hline V_F & T_{\text{P}} = 15^{\circ}C & - & 1.80 & - & 1.80 & - & 1.80 & - \\ \hline V_{\text{C}} & (\text{chip}) & T_{\text{P}} = 25^{\circ}C & - & 1.80 & - & 1.80 & - & 1.80 & - \\ \hline V_{\text{C}} & (\text{chip}) & T_{\text{P}} = 25^{\circ}C & - & 1.80 & - & 1$				T _j =150°C	-	1.95	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				T _j =175°C	-	2.00	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Internal Gate resistance	r _g	-		-	0	-	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Capacitance	Cies			-	2.7	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Coes	$V_{CE} = 10V, V_{GE} = 0V, f =$	1MHz	-	0.09	-	nF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C _{res}			-	0.02	-	-
Forward voltage $ V_{F} \\ (\text{chip}) \\ V_{CC} = 600V \\ I_{C,I_{F}} = 25A I_{F} = 25C - 1.80 - V_{CC} = 600V \\ I_{C,I_{F}} = 25A L_{s} = 30\text{H} \\ V_{GE} = +15/-15 V \\ R_{G} = 36 \Omega \\ V_{CC} = 600V \\ I_{C,I_{F}} = 25A L_{s} = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_{F}} = 25A L_{s} = 30\text{H} \\ V_{GE} = +15/-15 V \\ R_{G} = 36 \Omega \\ V_{CC} = 600V \\ I_{G,I_{F}} = 25A L_{s} = 30\text{H} \\ V_{GE} = +15/-15 V \\ R_{G} = 36 \Omega \\ V_{CC} = 600V \\ I_{G,I_{F}} = 25A L_{s} = 30\text{H} \\ V_{GE} = +15/-15 V \\ R_{G} = 36 \Omega \\ V_{GE} = 415/-15 V \\ R_{G} = 36 \Omega \\ V_{GE} = 415/-15 V \\ R_{G} = 36 \Omega \\ V_{GE} = 415/-15 V \\ R_{G} = 36 \Omega \\ V_{GE} = 415/-15 V \\ V_{GE} = 25A L_{S} = 30\text{H} \\ V_{GE} = 415/-15 V \\ V_{$	Gate charge		_		-	170	-	nC
Forward voltage $ V_F \\ (\text{chip}) \\ V_C = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{GE} = 15/-15 \text{ V} \\ R_G = 36 \Omega \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{GE} = 15/-15 \text{ V} \\ R_G = 36 \Omega \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{GE} = 15/-15 \text{ V} \\ R_G = 36 \Omega \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{GE} = 15/-15 \text{ V} \\ R_G = 36 \Omega \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25A L_s = 30\text{H} \\ V_{CC} = 600V \\ I_{C,I_F} = 25C 0.22 $		V _F (terminal)		T _i =25°C	-	1.95	2.40	
Forward voltage $ \begin{array}{c} V_F \\ (\text{chip}) \end{array} = \begin{array}{c} V_F \\ (\text{chip}) \end{array} = \begin{array}{c} V_{\text{cc}} \\ T_{\text{i}} = 150^{\circ}\text{C} \\ T_{\text{i}} = 150^{\circ}\text{C} \\ T_{\text{i}} = 150^{\circ}\text{C} \\ T_{\text{i}} = 150^{\circ}\text{C} \\ T_{\text{i}} = 175^{\circ}\text{C} \\ T_{\text{i}} = 125^{\circ}\text{C} \\ T_{\text{i}} =$,	-	1.80	2.25	
$ \begin{array}{c} \text{Switching time (*1)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Forward voltage			,	-	1.85	-	V
$t_{d(on)} = t_{d(on)} = t_{d$	·			,	-	1.80	-	
$t_{d(on)} = t_{d(on)} = t_{d$,	-	1.75	-	
$I_{c,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.10 - \\ V_{GE} = +15/-15 \text{V} \qquad T_{j=150^{\circ}C} - 0.10 - \\ R_G = 36 \Omega \qquad T_{j=175^{\circ}C} - 0.10 - \\ I_{c,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.04 - \\ I_{c,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.04 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=150^{\circ}C} - 0.04 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=150^{\circ}C} - 0.04 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=150^{\circ}C} - 0.23 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.26 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=150^{\circ}C} - 0.27 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=150^{\circ}C} - 0.27 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.11 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.20 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=150^{\circ}C} - 0.23 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.23 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.08 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.016 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad T_{j=125^{\circ}C} - 0.16 - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A L_s = 30 \text{nH} \qquad - \\ I_{C,I_F} = 25A $		t _{d(on)}	$V_{\rm CC} = 600 \text{V}$,	-	0.09	-	
$ \text{Switching time (*1)} \\ & I_{\text{GE}} = +15/-15 \text{V} \\ & R_{\text{G}} = 36 \Omega \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{S}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{C}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{C}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{C}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{F}} = 25 \text{A} L_{\text{C}} = 30 \text{nH} \\ & I_{\text{C}} I_{\text{C}} I_{\text{C}} I_{\text{C}} I_{\text{C}} I_{\text{C}} I_{\text{C}} I_{\text{C}} I$			$I_{\rm C}, I_{\rm F} = 25$ A $L_{\rm S} = 30$ nH	,	-	0.10	-	
$R_{\rm G} = 36 \ \Omega \qquad \qquad \begin{array}{c} T_{\rm j} = 175^{\circ}{\rm C} \qquad $,	-	0.10	-	
$t_{r} = t_{c} = t_{c$,	-	0.10	-	
$t_{\rm f} = \frac{I_{\rm C,I_F} = 25 \rm A}{V_{\rm GE}} + 15/-15 V = \frac{T_{\rm j} = 125^{\circ} \rm C}{T_{\rm j} = 150^{\circ} \rm C} - \frac{0.04}{0.04} - \frac{1}{0.04} = \frac{1}{0.0$,	-	0.04	-	-
Switching time (*1)		,	$I_{\rm C}, I_{\rm F} = 25 {\rm A}$ $L_{\rm s} = 30 {\rm nH}$		-	0.04	-	-
Switching time (*1) $R_{\rm G} = 36~\Omega \qquad T_{\rm j} = 175^{\circ}{\rm C} \qquad - \qquad 0.04 \qquad - \qquad 0.026 \qquad - \qquad 0.026 \qquad - \qquad 0.026 \qquad - \qquad 0.026 \qquad - \qquad 0.027 \qquad - \qquad 0.011 \qquad - \qquad 0.027 \qquad - \qquad 0.011 \qquad - \qquad 0.020 \qquad -$		t _r		,	-	0.04	-	
Switching time (*1) $t_{\text{d(off)}} = t_{\text{d(off)}} = t_{d(o$	0		$R_{\rm G} = 36 \Omega$	T _i =175°C	-	0.04	-	
$t_{\text{d(off)}} = t_{\text{d(off)}} = t_{\text{d(off)}$	Switching time (*1)			T _i =25°C	-	0.23	-	
$t_{\text{d(off)}} = \frac{V_{\text{GE}} = +15/-15 \text{V}}{R_{\text{G}} = 36 \Omega} = \frac{T_{\text{j}} = 150^{\circ}\text{C}}{T_{\text{j}} = 175^{\circ}\text{C}} - \frac{0.27}{0.27} - \frac{1}{0.27} = \frac{1}{0.27} $				T _i =125°C	-	0.26	-	
$R_{\rm G} = 36~\Omega \qquad \qquad T_{\rm j=175^{\circ}C} \qquad - \qquad 0.27 \qquad - \qquad V_{\rm CC} = 600 \mbox{V} \qquad \qquad T_{\rm j=25^{\circ}C} \qquad - \qquad 0.11 \qquad - \qquad V_{\rm GE} = +15/-15~\mbox{V} \qquad \qquad T_{\rm j=125^{\circ}C} \qquad - \qquad 0.20 \qquad - \qquad V_{\rm GE} = +15/-15~\mbox{V} \qquad \qquad T_{\rm j=150^{\circ}C} \qquad - \qquad 0.22 \qquad - \qquad V_{\rm CC} = 600 \mbox{V} \qquad \qquad T_{\rm j=175^{\circ}C} \qquad - \qquad 0.23 \qquad - \qquad V_{\rm CC} = 600 \mbox{V} \qquad \qquad T_{\rm j=25^{\circ}C} \qquad - \qquad 0.08 \qquad - \qquad V_{\rm CC} = 600 \mbox{V} \qquad \qquad T_{\rm j=25^{\circ}C} \qquad - \qquad 0.08 \qquad - \qquad V_{\rm CC} = 415/-15~\mbox{V} \qquad \qquad T_{\rm j=125^{\circ}C} \qquad - \qquad 0.16 \qquad - \qquad V_{\rm GE} = +15/-15~\mbox{V} \qquad \qquad T_{\rm j=150^{\circ}C} \qquad - \qquad 0.19 \qquad - \qquad $		t _{d(off)}		T _i =150°C	-		-	μs
$t_{\rm f} = \begin{cases} V_{\rm CC} = 600 {\rm V} & T_{\rm j} = 25^{\circ}{\rm C} & - & 0.11 & - \\ I_{\rm C}, I_{\rm F} = 25 {\rm A} & L_{\rm s} = 30 {\rm nH} & T_{\rm j} = 125^{\circ}{\rm C} & - & 0.20 & - \\ V_{\rm GE} = +15/-15 {\rm V} & T_{\rm j} = 150^{\circ}{\rm C} & - & 0.22 & - \\ R_{\rm G} = 36 {\rm \Omega} & T_{\rm j} = 175^{\circ}{\rm C} & - & 0.23 & - \\ \end{cases}$ Reverse recovery time $t_{\rm rr} = \begin{cases} V_{\rm CC} = 600 {\rm V} & T_{\rm j} = 25^{\circ}{\rm C} & - & 0.08 & - \\ I_{\rm C}, I_{\rm F} = 25 {\rm A} & L_{\rm s} = 30 {\rm nH} & T_{\rm j} = 125^{\circ}{\rm C} & - & 0.16 & - \\ V_{\rm GE} = +15/-15 {\rm V} & T_{\rm j} = 150^{\circ}{\rm C} & - & 0.19 & - \end{cases}$			$R_{\rm G} = 36 \Omega$		-		-	
$t_{\rm f} = \begin{array}{c} I_{\rm C}/I_{\rm F} = 25{\rm A} L_{\rm s} = 30{\rm nH} \\ V_{\rm GE} = +15/-15 \; {\rm V} \\ R_{\rm G} = 36 \; \Omega \\ \end{array} \qquad \begin{array}{c} T_{\rm j} = 125^{\circ}{\rm C} \\ - 0.20 \\ - 0.22 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.23 \\ - 0.24 \\ - 0.25 \\$				•	-		-	
$V_{\rm GE} = +15/-15 \text{V} \qquad \qquad$,	-		-	
$R_{\rm G} = 36 \ \Omega \qquad \qquad T_{\rm j=175^{\circ}C} \qquad - \qquad 0.23 \qquad - \qquad 0.23 \qquad - \qquad 0.08 \qquad - \qquad 0.09 \qquad - $		t_{f}		,	-		-	
Reverse recovery time			_	,	-		-	-
Reverse recovery time $t_{rr} = \begin{cases} I_{C}, I_{F} = 25A & L_{s} = 30 \text{nH} \\ V_{GE} = +15/-15 \text{ V} \end{cases} = \begin{cases} T_{j} = 125^{\circ}\text{C} & - & 0.16 & - \\ T_{j} = 150^{\circ}\text{C} & - & 0.19 & - \end{cases}$				•	-		-	
Reverse recovery time $V_{GE} = +15/-15 \text{ V}$ $T_j=150^{\circ}\text{C}$ - 0.19 -				,	-		-	
, , , , , , , , , , , , , , , , , , , ,	Reverse recovery time	covery time t _{rr}			-		-	
			$R_{\rm G} = 36 \Omega$	T _i =175°C	-	0.22	-	-

^(*1) Turn on time $(t_{on}) = t_{d(on)} + t_{r}$, Turn off time $(t_{off}) = t_{d(off)} + t_{f}$

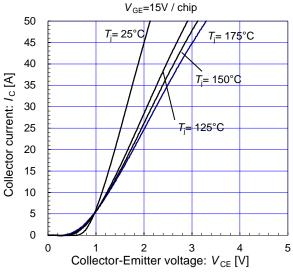
Items		Symbols Conditions		Characteristics			Units	
	items	Symbols	Conditions		min.	typ.	max.	Ullits
			V _{CC} = 600V	T _j =25°C	-	1.97	-	
		Eon	$I_{\rm C}, I_{\rm F} = 25 {\rm A}$ $L_{\rm s} = 30 {\rm nH}$	T _j =125°C	-	2.62	-	
		∠ on	$V_{GE} = +15/-15 \text{ V}$	T _j =150°C	-	2.85	-	
			$R_{\rm G} = 36 \Omega$	T _i =175°C	-	3.08	-	
			$V_{\rm CC} = 600 \rm{V}$	T _i =25°C		1.84	-	-
rter	Switching loss	_	$I_{\rm C}, I_{\rm F} = 25 {\rm A}$ $L_{\rm s} = 30 {\rm nH}$	T _i =125°C	-	2.41	-	
Ve	Switching loss (per pulse)	E_{off}	$V_{GE} = +15/-15 \text{ V}$	T _i =150°C	-	2.57	-	mJ
_			$R_{\rm G} = 36 \Omega$	<i>T</i> _i =175°C	-	2.70	-	
			$V_{\rm CC} = 600 \rm V$	T _i =25°C	-	0.90	-	
		_	$I_{\rm C}, I_{\rm F} = 25 {\rm A}$ $L_{\rm s} = 30 {\rm nH}$	T _i =125°C	-	1.54	-	
		Err	$V_{GE} = +15/-15 \text{ V}$	T _i =150°C	-	1.75	-	-
			$R_{\rm G} = 36 \Omega$	T _i =175°C	-	1.98	-	1
	Zero Gate voltage	_	$V_{GE} = 0V$	J				
	collector current	I _{CES}	$V_{CE} = 1200V$		-	-	50	μA
	Gate-Emitter leakage current	I _{GES}	$V_{\rm CE} = 0 \text{V}, V_{\rm GE} = +20/-2$	20V	-	-	100	nA
		V _{CE(sat)}	$V_{\text{GE}} = 15\text{V}$					
		(terminal)	$I_{\rm C} = 25A$	T _j =25°C	-	1.65	2.10	
	Collector-Emitter	(**************************************	20/1	T _i =25°C	-	1.50	1.95	
	saturation voltage	V _{CE(sat)}		T _i =125°C	-	1.85	-	V
	- Control of Control	(chip)		$T_{\rm j}$ =150°C	-	1.95	_	-
		(Criip)		$T_{\rm i}$ =175°C	-	2.00	-	-
	Internal Gate resistance	r	_	1,-1100	-	0	_	Ω
	Internal Gate resistance	t _{d(on)}	$V_{\rm CC} = 600 \text{V}$	T _i =25°C		0.09	_	32
			$I_{\rm C} = 25A$ $L_{\rm s} = 30 \text{nH}$	T_{j} =125°C	-	0.09	-	
			$V_{GE} = +15/-15 \text{ V}$	$T_{\rm j} = 123 \text{ C}$ $T_{\rm i} = 150 ^{\circ} \text{C}$	-		-	
				$T_{\rm j} = 130 \rm C$ $T_{\rm i} = 175 \rm ^{\circ} C$	-	0.10	-	
			$R_{\rm G} = 36 \Omega$	$T_{\rm j} = 173 \rm C$ $T_{\rm i} = 25 \rm ^{\circ} C$	-		-	
a			$V_{\rm CC} = 600V$,	-	0.04	-	
Brake			$I_{\rm C} = 25A L_{\rm s} = 30 \text{nH}$	T _j =125°C	-	0.04	-	
Ω			$V_{GE} = +15/-15 \text{ V}$	$T_{\rm j} = 150^{\circ} \rm C$	-	0.04	-	
	Switching time (*1)		$R_{\rm G} = 36 \Omega$	$T_{\rm j} = 175^{\circ} \text{C}$	-	0.04	-	μs
		$t_{\sf d(off)}$	$V_{\rm CC} = 600V$	T _j =25°C	-	0.23	-	
			$I_{\rm C} = 25A$ $L_{\rm s} = 30$ nH	$T_{\rm j}$ =125°C	-	0.26	-	
			$V_{GE} = +15/-15 \text{ V}$	$T_{\rm j}$ =150°C	-	0.27	-	
			$R_{\rm G} = 36 \Omega$	$T_{\rm j}$ =175°C	-	0.27	-	
			$V_{\rm CC} = 600 \text{V}$	<i>T</i> _j =25°C	-	0.11	-	-
		$t_{ m f}$	$I_{\rm C} = 25A$ $L_{\rm s} = 30$ nH	$T_{\rm j}$ =125°C	-	0.20	-	
			$V_{GE} = +15/-15 \text{ V}$	$T_{\rm j}$ =150°C	-	0.22	-	
			$R_{\rm G} = 36 \Omega$	<i>T</i> _j =175°C	-	0.23	-	
	Reverse current	I _{RRM}	V _R = 1200V	T 0=00	-	-	50	μA
		V _F (terminal)	/ _F = 10A	T _j =25°C	-	2.05	2.50	
			I _F = 10A	<i>T</i> _j =25°C	-	1.90	2.35	5 V
	Forward voltage	V _F (chip)		<i>T</i> _j =125°C	-	1.95	-	
				<i>T</i> _j =150°C	-	1.90	-	
		_		<i>T</i> _j =175°C	-	1.85	-	
rter	Reverse current Forward voltage	I _{RRM}	V _R = 1600V		-	-	50	μA
nve	Forward voltage	V_{FM}	$I_{\rm F}$ = 25A	terminal	-	1.15	1.60	V
		- FIVI		chip	-	1.00	1.45	v
stor	Resistance		T = 25°C		-	5000	-	Ω
ərmi	Resistance B value		T = 100°C		465	495	520	24
ř	B value	В	$T = 25/50^{\circ}\text{C}$	_	3305	3375	3450	K

IGBT Modules

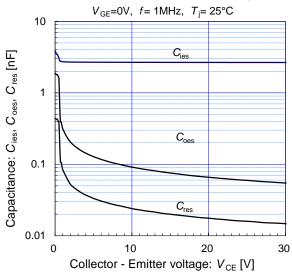

NOTICE:


The external gate resistance ($R_{\rm G}$) shown above is one of our recommended value for the purpose of minimum switching loss. However the optimum $R_{\rm G}$ depends on circuit configuration and/or environment. We recommend that the $R_{\rm G}$ has to be carefully chosen based on consideration if IGBT module matches design criteria, for example, switching loss, EMC/EMI, spike voltage, surge current and no unexpected oscillation and so on.

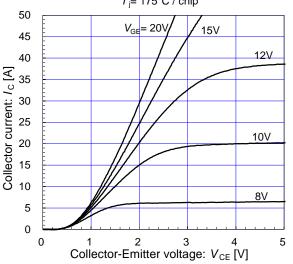
☐Thermal resistance characteristics


Items	Symbols	Conditions	Ch	Units		
items	Symbols		min.	typ.	max.	UiillS
		Inverter IGBT	-	-	0.88	
		Inverter FWD	-	-	1.01	
Thermal resistance (1device)	$R_{\text{th(j-c)}}$	Brake IGBT	-	-	0.88	
		Brake FWD	-	-	2.31	°C/W
		Converter Diode	-	-	0.87	
Contact thermal resistance	P	with 1 W/(m·K) thermal	_	0.05		
(1 IGBT+1 FWD) (*1)	$R_{ m th(c-f)}$	grease	_	0.03	-	

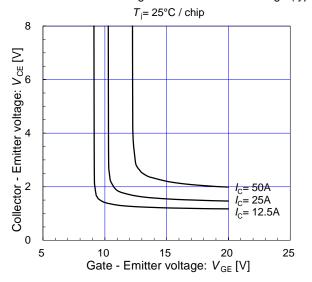
^(*1) This is the value which is defined mounting on the additional cooling fin with thermal grease.



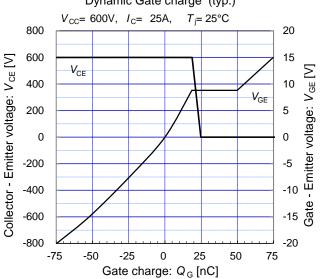
[Inverter]
Collector current vs. Collector-Emitter voltage (typ.)

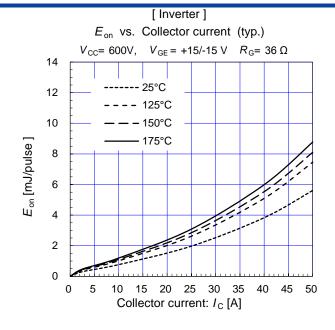


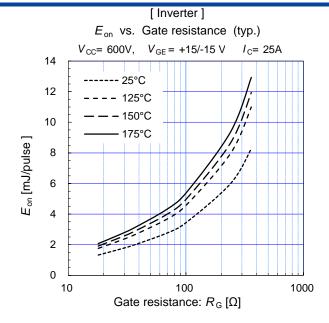
[Inverter]
Capacitance vs. Collector-Emitter voltage (typ.)

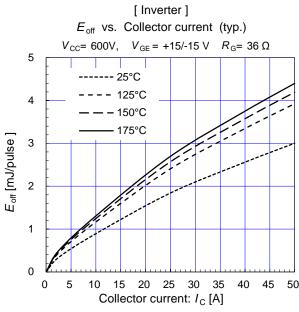


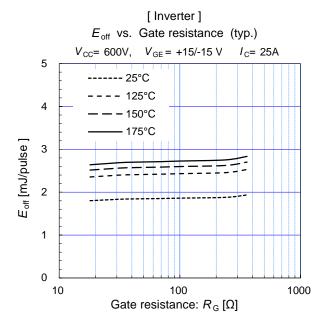
[Inverter]

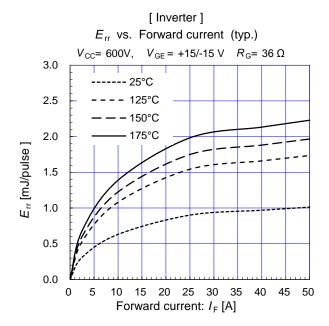


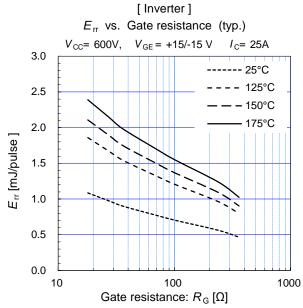

[Inverter] Collector-Emitter voltage vs. Gate-Emitter voltage (typ.

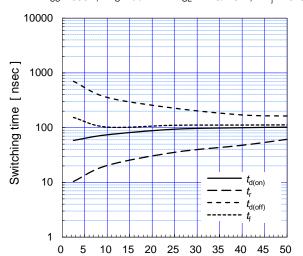



[Inverter]

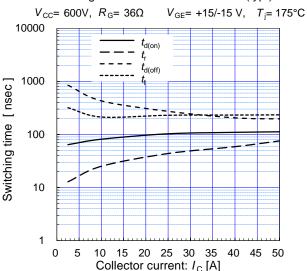

Dynamic Gate charge (typ.)



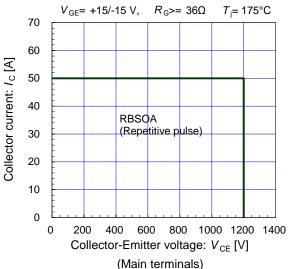




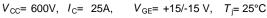
IGBT Modules

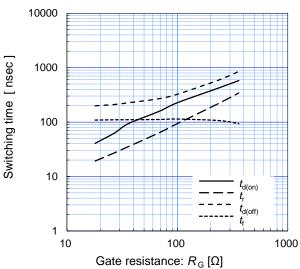

Switching time vs. Collector current (typ.) $V_{\rm CC}$ = 600V, $R_{\rm G}$ = 36 Ω $V_{\rm GE}$ = +15/-15 V, $T_{\rm i}$ = 25°C

[Inverter]

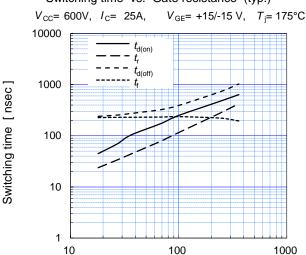

Collector current: I_C [A]

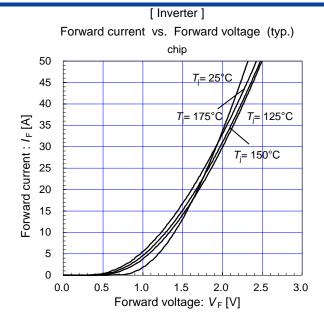
Switching time vs. Collector current (typ.)

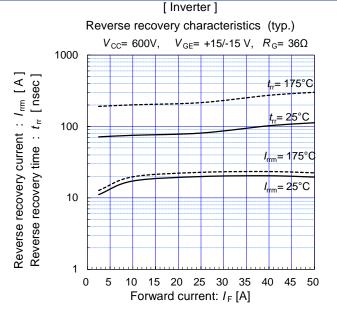

[Inverter]


Reverse bias safe operating area (max.)

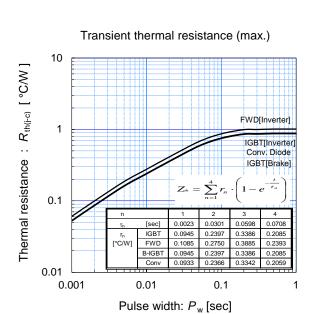
[Inverter]

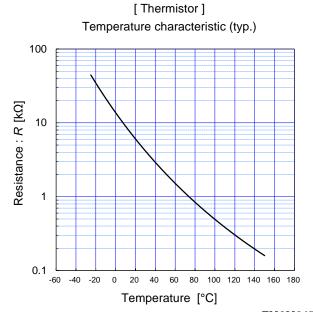

Switching time vs. Gate resistance (typ.)


[Inverter]

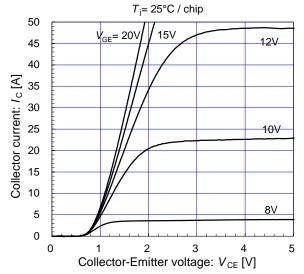

Switching time vs. Gate resistance (typ.)

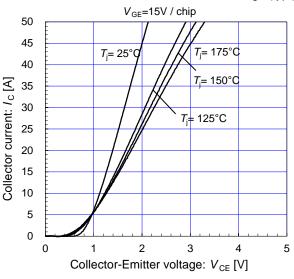
Gate resistance: $R_G[\Omega]$


IGBT Modules

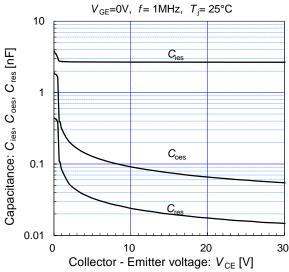


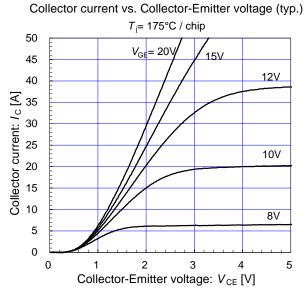
Forward current vs. Forward voltage (typ.) chip 50 45 40 Forward current: /F[A] 35 30 25 20 $T_{\rm j} = 150$ *T*_i= 25°C 15 10 5 0 0.0 1.0 2.0 Forward voltage: V_F [V]

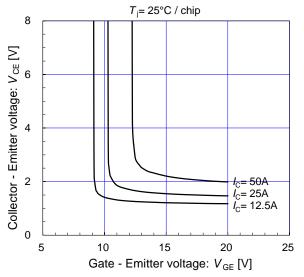

[Converter]

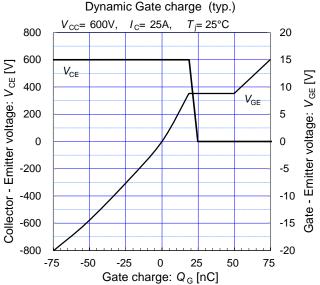


IGBT Modules




[Brake] Collector current vs. Collector-Emitter voltage (typ.)


[Brake] Capacitance vs. Collector-Emitter voltage (typ.)


[Brake]

[Brake] Collector-Emitter voltage vs. Gate-Emitter voltage (typ.

[Brake]
Dynamic Gate charge (typ.)

IGBT Modules

Warnings

- This Catalog contains the product specifications, characteristics, data, materials, and structures as of 10/2016.
 The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - · Computers · OA equipment · Communications equipment (terminal devices) · Measurement equipment
 - · Machine tools · Audiovisual equipment · Electrical home appliances · Personal equipment · Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - ·Transportation equipment (mounted on cars and ships) ·Trunk communications equipment
 - ·Traffic-signal control equipment ·Gas leakage detectors with an auto-shut-off feature
 - ·Emergency equipment for responding to disasters and anti-burglary devices ·Safety devices ·Medical equipment
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - ·Space equipment ·Aeronautic equipment ·Nuclear control equipment ·Submarine repeater equipment
- Copyright (c)1996-2016 by Fuji Electric Co., Ltd. All rights reserved.
 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

Technical Information

- Please refer to URLs below for futher information about products, application manuals and design support.
- •关于本规格书中没有记载的产品信息,应用手册,技术信息等,请参考以下链接。
- ●本データシートに記載されていない製品情報,アプリケーションマニュアル,デザインサポートは以下のURLをご参照下さい。

FUJI ELECTRIC Power Semiconductor WEB site				
日本	www.fujielectric.co.jp/products/semiconductor/			
Global	www.fujielectric.com/products/semiconductor/			
中国	www.fujielectric.com.cn/products/semiconductor/			
Europe	www.fujielectric-europe.com/en/power_semiconductor/			
North America	www.americas.fujielectric.com/components/semiconductors/			

Information	
日本	
1 半導体総合カタログ	www.fujielectric.co.jp/products/semiconductor/catalog/
2 製品情報	www.fujielectric.co.jp/products/semiconductor/model/
3 アプリケーションマニュアル	www.fujielectric.co.jp/products/semiconductor/model/igbt/application/
4 デザインサポート	www.fujielectric.co.jp/products/semiconductor/model/igbt/technical/
5 マウンティングインストラクション	www.fujielectric.co.jp/products/semiconductor/model/igbt/mounting/
6 IGBT 損失シミュレーションソフト	www.fujielectric.co.jp/products/semiconductor/model/igbt/simulation/
7 富士電機技報	www.fujielectric.co.jp/products/semiconductor/journal/
8 製品のお問い合わせ	www.fujielectric.co.jp/products/semiconductor/contact/
9 改廃のお知らせ	www.fujielectric.co.jp/products/semiconductor/discontinued/

Global	
1 Semiconductors General Catalog	www.fujielectric.com/products/semiconductor/catalog/
2 Product Information	www.fujielectric.com/products/semiconductor/model/
3 Application Manuals	www.fujielectric.com/products/semiconductor/model/igbt/application/
4 Design Support	www.fujielectric.com/products/semiconductor/model/igbt/technical/
5 Mounting Instructions	www.fujielectric.com/products/semiconductor/model/igbt/mounting/
6 IGBT Loss Simulation Software	www.fujielectric.com/products/semiconductor/model/igbt/simulation/
7 Fuji Electric Journal	www.fujielectric.com/products/semiconductor/journal/
8 Contact	www.fujielectric.com/products/semiconductor/contact/
9 Revised and discontinued product information	www.fujielectric.com/products/semiconductor/discontinued/

中国	
1 半导体综合目录	www.fujielectric.com.cn/products/semiconductor/catalog/
2 产品信息	www.fujielectric.com.cn/products/semiconductor/model/
3 应用手册	www.fujielectric.com.cn/products/semiconductor/model/igbt/application/
4 技术信息	www.fujielectric.com.cn/products/semiconductor/model/igbt/technical/
5 安装说明书	www.fujielectric.com.cn/products/semiconductor/model/igbt/mounting/
6 IGBT 损耗模拟软件	www.fujielectric.com.cn/products/semiconductor/model/igbt/simulation/
7 富士电机技报	www.fujielectric.com.cn/products/semiconductor/journal/
8 产品咨询	www.fujielectric.com.cn/products/semiconductor/contact/
9 产品更改和停产信息	www.fujielectric.com.cn/products/semiconductor/discontinued/